

QUESTION PAPER WITH SOLUTION

CHEMISTRY _ 2 Sep. _ SHIFT - 2

H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |⊠: info@motion.ac.in

- 1. Cast iron is used for the manufacture of :
 - (1) Wrought iron and steel
- (2) Wrought iron and pig iron
- (3) Wrougth iron, pig iron and steel
- (4) Pig iron, scrap iron and steel

Sol.

Refer topic metallurgy

- 2. The shape/structure of $[XeF_5]^-$ and XeO_3F_2 , respectively, are :
 - (1) Pentagonal planar and trigonal bipyramidal
 - (2) Trigonal bipyramidal and trigonal bipyramidal
 - (3) Octahedral and square pyramidal
 - (4) Trigonal bipyramidal and pentagonal planar
- Sol.

 $[XeF_5]$ $5BP + 2LP = 7VSEP \Rightarrow sp^3d^3$ hybridisation XeO₃F₃ $5BP + 0LP = 5VSEP \Rightarrow sp^3d$ hybridisation

3. Simplified absorption spectra of three complexes ((i), (ii) and (iii)) of Mn+ ion are provided below; their $\lambda_{\text{\tiny max}}$ values are marked as A, B and C respectively. The correct match between the complexes and their λ_{max} values is :

Wave length (nm)

- (i) $[M(NCS)_6]^{(-6+n)}$
- (ii) $[MF_6]^{(-6+n)}$
- (iii) $[M(NH_3)_6]^{n+}$
- (1) A-(i), B-(ii), C-(iii)
- (3) A-(ii), B-(iii), C-(i)

- (2) A-(iii), B-(i), C-(ii)
- (4) A-(ii), B-(i), C-(iii)

Sol.

$$\Delta = \frac{\text{hc}}{\lambda_{\text{absorbedf(max)}}}$$

 $A \rightarrow NH_3$ comp (iii)

 $B \rightarrow NCS comp(i)$

 $C \rightarrow F^- comp (ii)$

using spectrochemical series of ligand

 $F^- < NCS^- < NH_3$ order of $\Delta + e$ crystal field spliting energy

So. NH_3 complex $\rightarrow A$

F- complex - C

 $NCS^- complex \rightarrow B$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

Motion[®]

4. The correct observation in the following reactions is:

Sucrose
$$\xrightarrow{Gly \text{ cosidic bond}} A + B \xrightarrow{Seliwanoff's} ?$$
Cleavage (Hydrolysis) ?

- (1) Formation of red colour
- (3) Formation of violet colour
- (2) Formation of blue colour
- (4) Gives no colour

Sol.

$$Sucrose \xrightarrow{Gly \, cosidic \, bond} Glu \, cos \, e + Fructose \xrightarrow{Seliwanoff's} Re \, d \, Colour$$

The results given in the below table were obtained during kinetic studies of the following reaction: 5.

$2A + B \rightarrow C +$	<u>+ B → C + D</u>				
Experiment	[A]/ molL ⁻¹	[B]/ molL ⁻¹	Initial rate/ molL ⁻¹ min ⁻¹		
I	0.1	0.1	6.00×10^{-3}		
II	0.1	0.2	2.40×10^{-2}		
III	0.2	0.1	1.20×10^{-2}		
IV	Χ	0.2	7.20×10^{-2}		
V	Λ3	Y	2.88×10^{-1}		

X and Y in the given table are respectively :

Sol.

Exp. (I)
$$6 \times 10^{-3} = K$$

(I)
$$6 \times 10^{-3} = K (0.1)^p (0.1)^q$$

(II) $2.4 \times 10^{-2} = K (0.1)^p (0.2)^q$
(III) $1.2 \times 10^{-2} = K (0.2)^p (0.1)^q$

(III)
$$1.2 \times 10^{-2} = K (0.2)^p (0.1)^q$$

$$\frac{\text{exp(I)}}{\text{exp(II)}} \qquad \quad \frac{1}{4} \, = \left(\frac{1}{2}\right)^{q} \Rightarrow q = 2$$

$$\frac{\mathsf{Exp.}(\mathsf{I})}{\mathsf{Exp.}(\mathsf{III})} \qquad \quad \frac{1}{2} \, = \left(\frac{1}{2}\right)^{\!\mathsf{p}} \, \Rightarrow \mathsf{p} \, = \, 1$$

$$\frac{0.6 \times 10^{-2}}{7.2 \times 10^{-2}} = \left(\frac{0.1}{x}\right)^{1} \cdot \left[\frac{0.1}{0.2}\right]^{2}$$

$$\frac{1}{12} = \frac{0.1}{x} - \frac{1}{4}$$

$$[x] = 0.3$$

$$exp(I) \div exp(V)$$

$$\frac{0.6 \times 10^{-2}}{2.88 \times 10^{-1}} \; = \left(\frac{0.1}{0.3}\right)^{\! 1} \times \! \left(\frac{0.1}{y}\right)^{\! 2}$$

$$\frac{1}{48} = \frac{1}{3} \times \frac{10^{-2}}{y^2} \Rightarrow y^2 = 0.16$$

$$y = 0.4$$

Ans(2)

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

6. Match the type of interaction in column A with the distance dependence of their interaction energy in column B:

Α

В

- (I) ion-ion
- (a)
- (II) dipole-dipole
- (b)
- (III) London dispersion
- (c)
- (d) $\frac{1}{r^6}$
- (1) (I)-(a), (II)-(b), (III)-(d)
- (2) (I)-(a), (II)-(b), (III)-(c)
- (3) (I)-(b), (II)-(d), (III)-(c)
- (4) (I)-(a), (II)-(c), (III)-(d)

Sol.

ion - ion
$$\alpha \frac{1}{r}$$

dipole – dipole
$$\alpha \frac{1}{r^3}$$

Londong dispersion $\alpha \frac{1}{r^6}$

7. The major product obtained from E_2 – elimination of 3-bromo-2-fluoropentane is :

$$(1) \begin{array}{c} CH_3CH_2CH=C-F \\ CH_3CH_3CH_3 \end{array}$$

Sol.

$$C - C - C - C - C - C \xrightarrow{\text{E}_2 'elin'} CH_3 - CH_2 - CH = C - CH_3$$

$$\downarrow F$$

CRASH COURSE FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

8. Consider the reaction sequence given below:

Which of the following statements is true:

- (1) Changing the concentration of base will have no effect on reaction (1).
- (2) Doubling the concentration of base will double the rate of both the reactions.
- (3) Changing the base from OH° to ${}^{\circ}OR$ will have no effect on reaction (2).
- (4) Changing the concentration of base will have no effect on reaction (2).
- Sol.

$$CH_{3} - \overset{CH_{3}}{\overset{I}{C}} - Br \xrightarrow{OH^{-}/H_{2}O} CH_{3} - \overset{CH_{3}}{\overset{I}{C}} - OH + Br^{\Theta}$$

$$CH_{3} - \overset{CH_{3}}{\overset{I}{C}} - OH + Br^{\Theta}$$

- 9. The size of a raw mango shrinks to a much smaller size when kept in a concentrated salt solution. Which one of the following process can explain this?
 - (1) Diffusion

(2) Osmosis

(3) Reverse osmosis

(4) Dialysis

Sol. 2

> Theoritical Ans. Osmosis Option (2)

- If you spill a chemical toiled cleaning liquid on your hand, your first aid would be: 10.
 - (1) Aqueous NH,

(2) Aqueous NaHCO₃

(3) Aqueous NaOH

(4) Vinegar

Sol. 2

Fact

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

11. Arrange the followig labelled hydrogens in decreasing order of acidity:

$$\begin{array}{c|c} & \text{NO}_2 & \text{C=C-} \\ \hline \\ \text{d} \\ \hline \\ \text{d} \\ \hline \end{array} \\ \begin{array}{c} \text{Coo} \\ \\ \text{D} \\ \\ \end{array} \\ \begin{array}{c} \text{Coo} \\ \\ \\ \text{b} \\ \end{array}$$

- (1) b > a > c > d
- (3) c > b > d > a

(2) b > c > d > a(4) c > b > a > d

Sol. 2

Order of acidic strength

COOH COOH OH
$$| O | O | O | R - C \equiv CH$$

$$| NO_2 | O | NO_2$$

- An organic compound 'A' $(C_9H_{10}O)$ when treated with conc. HI undergoes cleavage to yield compounds 'B' and 'C'. 'B' gives yellow precipitate with AgNO₃ where as 'C' tautomerizes to 'D'. 'D' gives positive iodoform test. 'A' could be:
 - (1) CH₂-O-CH=CH
- (2) H_3C \longrightarrow $O-CH=CH_2$
- $(3) \sqrt{} O CH_2 CH = CH_2$
- (4) O-CH=CH=CH₃

Sol. 1

- **13.** Two elements A and B have similar chemical properties. They don't form solid hydrogencarbonates, but react with nitrogen to form nitrides. A and B, respectively, are:
 - (1) Na and Ca

(2) Cs and Ba

(3) Na and Rb

(4) Li and Mg

Sol. 4

LiHCO₃ & Mg(HCO₃)₂ does not exist in solid form but both forms nitrides with nitrogen gas

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

14. The number of subshells associated with n = 4 and m = -2 quantum numbers is :

(1)4

(2)8

(4) 16

Sol. 3

n = 4

 $\ell = 0$

m = 0m = -1, 0, +1 $\ell = 1$

 $\ell = 2$

m = -2, +2, -1, +1, 0

 $\ell = 3$

 $m = \pm 3, \pm 2, \pm 1, 0$

Ans. '2' Subshells

Option (3)

15. The major product of the following reaction is:

$$CH_3$$
 conc. HNO_3 + conc. H_2SO_4

$$(1) \begin{array}{c} OH \\ O_2N \end{array} \begin{array}{c} OH \\ NO \end{array}$$

$$(2) \begin{array}{c} H_3C \\ NO_2 \\ NO_2 \end{array}$$

Sol. 3

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

16. Two compounds A and B with same molecular formula (C₃H₆O) undergo Grignard's reaction with methylmagnesium bromide to give products C and D. Products C and D show following chemical tests.

Test	С	D	
Ceric ammonium nitrate Test	Positive	Positive	
Lucas Test	Turbidity obtained after five minutes	Turbidity obtained immediately	
Iodoform Test	Positive	Negative	

C and D respectively are:

(1)
$$C = H_3C - CH_2 - CH_2 - CH_2 - OH$$
;

(3)
$$C = H_3C - CH_2 - CH_2 - CH_2 - OH$$
;

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

Motion[™]

Sol. 2

$$CH_{3} - CH_{2} - CH - CH_{3} \xrightarrow{\text{Lucas test}} \text{turbidity obtain after 5 min}$$

$$(2^{\circ} - \text{alc}) \xrightarrow{\text{Lucas test}} \text{CHI}_{3}$$

$$CH_{3} - C - OH \xrightarrow{\text{Lucas test}} \text{turbidity obtain immediately}$$

$$CH_{3} - C - OH \xrightarrow{\text{Lucas test}} \text{No reaction}$$

17. Three elements X, Y and Z are in the 3rd peroid of the periodic table. The oxides of X, Y and Z, respectively, are basic, amphoteric and acidic, The correct order of the atomic numbers of X, Y and Z is:

(1) X < Y < Z

(2) Y < X < Z

(3) Z < Y < X

(4) X < Z < Y

Sol.

18. The one that is not expected to show isomerism is :

- (1) $[Ni(NH_2)_4(H_2O)_2]^{2+}$
- (2) $[Ni(en)_3]^{2+}$

(3) $[Pt(NH_3)_2Cl_2]$

(4) $[Ni(NH_3)_3Cl_3]$

Sol. 4

 $[Ni(NH_3)_2Cl_2]Ni^{2+}$ is sp^3 hybridised & such tetrahedral complex does not show either of geometrical or optical isomerism

[Ni(en)₂]²⁺ shows only optical isomers while other three shows geometrical isomerism

19. Amongst the following statements regarding adsorption, those that are valid are :

- (a) ΔH becomes less negative as adsorption proceeds.
- (b) On a given adsorbent, ammonia is adsorbed more than nitrogen gas.
- (c) On adsorption, the residual force acting along the surface of the adsorbent increases.
- (d) With increase in temperature, the equilibrium concentration of adsorbate increases.
- (1) (b) and (c)

(2) (c) and (d)

(3) (a) and (b)

- (4) (d) and (a)
- **Sol.** Statement 'a' & 'b'

20. The molecular geometry of SF_6 is octahdral. What is the geometry of SF_4 (including lone pair(s) of electrons, if any)?

(1) Pyramidal

(2) Trigonal bipyramidal

(3) Tetrahedral

(4) Square planar

Sol. 2

SF₄ is Sp³d hybridised in which hybrid orbitals have TBP arrangement but its shape is sea-saw

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION JEE MAIN 2020

ANSWER KEY

हमारा विश्वास... हर एक विद्यार्थी है ख़ास

- The ratio of the mass percentages of 'C & H' and 'C & O' of a saturated acyclic organic compound 21. 'X' are 4:1 and 3:4 respectively. Then, the moles of oxygen gas required for complete combustion of two moles of organic compound 'X' is ___
- Mass ratio of C : H is 4 : $1 \Rightarrow 12 : 3$ Sol. & C : O is 3 : $4 \Rightarrow 12 : 16$ So,

mass mole moleratio

C 12 1 H 3 0 16

Empirical formula ⇒ CH₃O

as compound is satured a cyclic so, molecular formula is $C_2H_6O_2$.

$$C_2H_6O_2 + \frac{5}{2}O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_2O_{(g)}$$

So, required moles of O_2 is $\Rightarrow 5$

22. For the disproportionation reaction $2Cu^{+}(aq) \rightleftharpoons Cu(s) + Cu^{2+}(aq)$ at K, In K (where K is the equilibrium constant) is $___ \times 10^{-1}$. Given:

$$(E_{Cu^{+}/Cu^{+}}^{0} = 0.16 \text{ V}$$

$$E_{Cu^{+}/Cu}^{0} = 0.52 \text{ V}$$

$$\frac{RT}{F} = 0.025)$$

Sol. 144

$$2Cu^{+} \xrightarrow{\longleftarrow} Cu(s) + Cu^{+2}$$

$$E^{0} = 0.52 - 0.16$$

$$= 0.36$$

$$E^{0} = \frac{RT}{nF} ln (k_{eq})$$

$$ln(k_{eq}) = \frac{0.36}{0.025} \times \frac{1}{1}$$

$$= \frac{360}{25} = 14.4$$

$$= 144 \times 10^{-1}$$
Ans. 144

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

Motion[™]

- **23.** The work function of sodium metal is $4.41 \times 10^{-19} \text{J}$. If photons of wavelength 300 nm are incident on the metal, the kinetic energy of the ejected electrons will be (h = $6.63 \times 10^{-34} \text{ J}$ s; c = $3 \times 10^{8} \text{ m/s}$) ______ $\times 10^{-21} \text{ J}$.
- Sol. 222

$$\phi = 4.41 \times 10^{-19} \,\text{J}$$

$$\lambda = 300 \text{ nm}$$

$$KE_{max} = \frac{hc}{\lambda} - \phi$$

$$=\frac{6.63\times10^{-34}\times3\times10^{8}}{300\times10^{-9}}-4.41\times\ 10^{-19}$$

$$= 6.63 \times 10^{-19} - 4.41 \times 10^{-19}$$

$$= 222 \times 10^{-21}$$

Ans. 222

- **24.** The oxidation states of transition metal atoms in $K_2Cr_2O_7$, $KMnO_4$ and K_2FeO_4 , respectively, are x, y and z. The sum of x, y and z is ______.
- Sol. 19

$$K_2 Cr_2^{+6} O_7$$
 $K Mn O_4$ $K_2 [Fe O_4]$

- **25.** The heat of combustion of ethanol into carbon dioxide and water is -327 kcal at constant pressure. The heat evolved (in cal) at constant volume and 27° C (if all gases behave ideally) is (R = 2 cal mol⁻¹ K⁻¹) ______.
- **Sol.** $\Delta H_c^0 [C_2 H_5 OH] = -327 \text{ kcal}$

$$C_2H_5OH(I) + 3O_2(g) \longrightarrow 2CO_2(g) + 3(H_2O)(I)$$

$$\Delta E_c^0 = \Delta H_c^0 - \Delta ngRT$$

= - 327 × 1000 - (-1) × 2 × 300
= - 327000 + 600

= -326400

Admission **OPEN**

जब इन्होने पूरा किया अपना सपना तो आप भी पा सकते है लक्ष्य अपना

JEE MAIN RESULT 2019

308

300

KOTA'S PIONEER IN DIGITAL EDUCATION 1,95,00,000+ viewers | 72,67,900+ viewing hours | 2,11,000+ Subscribers

SERVICES	SILVER	GOLD	PLATINUM
Classroom Lectures (VOD)			
Live interaction	NA		
Doubt Support	NA		
Academic & Technical Support	NA		
Complete access to all content	NA		
Classroom Study Material	NA		
Exercise Sheets	NA		
Recorded Video Solutions	NA		
Online Test Series	NA		
Revision Material	NA		
Upgrade to Regular Classroom program	Chargeable	Chargeable	Free
Physical Classroom	NA	NA	
Computer Based Test	NA	NA	
Student Performance Report	NA	NA	
Workshop & Camp	NA	NA	
Motion Solution Lab- Supervised learning and instant doubt clearance	NA	NA	
Personalised guidance and mentoring	NA	NA	

FEE STRUCTURE						
CLASS	SILVER	GOLD	PLATINUM			
7th/8th	FREE	₹ 12,000	₹ 35,000			
9th/10th	FREE	₹ 15,000	₹ 40,000			
11th	FREE	₹ 29,999	₹ 49,999			
12th	FREE	₹ 39,999	₹ 54,999			
12th Pass	FREE	₹ 39,999	₹ 59,999			

- + Student Kit will be provided at extra cost to Platinum Student.
- SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures.
- GOLD (Online) can be converted to regular classroom (Any MOTION Center) by paying difference amount after lockdown.
- *** PLATINUM (Online + Regular) can be converted to regular classroom (Any MOTION Center) without any cost after lockdown.

New Batch Starting from:

16 & 23 September 2020

Zero Cost EMI Available

